Simple Economic Management Approaches of Overlay Traffic in Heterogeneous Internet Topologies

European Seventh Framework STREP FP7-2007-ICT-216259

SmoothIT Overlay Management Architecture

UZH, DoCoMo, TUD, AUEB, PrimeTel, AGH, ICOM, UniWue, TID

Peter Racz, UZH

ETM Workshop
Zurich
August 4-5, 2008
Outline

- Motivation and Example Scenario
- SmoothIT Objectives
- Incentives to Participate in ETM
- Solution Concepts
- Key Requirements
- SmoothIT Information Service
 - Architecture
 - Protocol
- Summary
Motivation

- P2P applications and traffic
 - Significant and increasing amount of P2P traffic
 - Suboptimal peer selection due to information asymmetry
 - Underlay topology, incl. routing metrics and values, unknown to overlay
 - Overlay requirements, incl. traffic characteristics, unknown to underlay

- Consequence
 - Non-optimized overlay traffic in the underlay
 - Higher costs in underlay
 - Lower QoS in overlay
 - Conventional traffic management techniques not suitable

- Goal of the SmoothIT project
 - Bridge overlay with underlay
 - Apply Economic Traffic Management (ETM)
 - Optimize traffic and achieve win-win situation for all parties
Example: Locality-unaware Overlay

Candidates: 1, 2, … 9
List of Peers: 4, 5, 7, 9
Example: Locality-aware Overlay

Candidates: 1, 2, ..., 9
List of Peers: 1, 2, 3, 4

SIS: SmoothIT Information Service
SmoothIT Objectives

- **Structure Internet-based overlay networks** to be efficient and optimal for users, overlay providers, and ISPs leading to the “win-win-win” (triple win) situation
 - Investigate, design, and apply specialized economic theory for decentralized network-efficient Internet-based overlay services in multi-domain scenarios, including wireless access
 - Develop an optimized incentive-driven signaling approach for defining (theory) and delivering (technology) economic signals in support of cooperating and competing providers

- **Operator-orientation**: demonstrating key results through a strong focus on ISP and telecom requirements (e.g., NN)
- **Implementation-orientation**: design, prototype, and validate the networking infrastructure (real-life test-bed)
Triple Win in Detail

- Management of **overlay networks** based on a collaboration between the overlay provider and the network (underlay) provider in support of the user (information is the key)
 - Cost and investment recovery for operators

- Incentives for **operators**
 - Reduce overlay traffic and inter-domain traffic, reduce costs
 - Keep overlay services (boost flat rate tariffs; keep customers)
 - Avoid to be on an overlay block list and “make money” with transport
 http://www.azureuswiki.com/index.php/Bad_ISPs

- Incentives for **overlay providers**
 - Active role in traffic management increases service quality
 - Increased user base due to better performing services

- Incentives for **user**
 - Increased service quality, *e.g.*, in terms of reliability, RTT, bandwidth
Solution Concepts

- **Agreements** between overlay provider and operator
 - *E.g.*, active caching: the operator provides explicit local caches for overlay content

- **Locality promotion**
 - Operator provides information about how to achieve best quality in overlay, *e.g.*, operator prioritizes alternative peer interconnections

- **QoS/QoE differentiation** *(application-awareness)*
 - Operator knows overlay application traffic (labels, deep packet inspection) and applies application-aware traffic management
Key Requirements

- Incentive-compatibility and traffic optimization
 - Provide incentives for all parties to achieve triple win
- Support of different overlay applications over a common interface
- Interface supporting various optimization schemes
 - E.g., different kinds of applications, high throughput, low delay, free/premium service
- Inter-domain support
- QoS support for network services
- Mobile network support
 - Node mobility, shared medium, heterogeneity of node and link capacities
- Easy deployment
 - In overlay applications and in ISPs’ networks
- Extensibility
 - New applications, new metrics
- Scalability, efficiency, and robustness
- Security
- Standard compliance
SmoothIT Information Service (SIS)

- Deployment of SIS components in the ISPs’ network
 - To convey information between overlay and underlay
- Client-Server architecture
- Overlay applications interact with SIS in order to select „better“ peers
 - Reducing costs of ISPs
 - Improving QoE of users
SIS Architecture

- **SIS**
 - Contains ETM logic
 - Aggregates information and calculates preference values

- **Metering**
 - Collects information from the network, e.g., BGP routing, topology

- **QoS Manager**
 - Performs QoS provisioning
 - Support of QoE schemes

- **Security**
 - Authentication and authorization

- **Config DB**
 - Stores various information about the network, e.g., topology, capacity
SIS Protocol

- Between SIS and overlay appl.
- Stateless request-response interaction scheme
- Application-independent
- Basic preference information service
 - Request: list of identifiers/peers (IP addresses)
 - Reply: list with preference values
- Optional further parameters
 - Per message or per parameter e.g., application type, desired QoS, capacity, locality, pricing information, peer availability
Possible Implementation

- Protocol selection criteria
 - Platform independence
 - Language independence
 - Standard compliance
 - Maturity and stability
 - Availability of parser libraries in different languages
 - Simplicity, ease of use for overlay applications
 - Efficiency, low protocol overhead
 - Human-readability
 - Formal and verifiable definition of message format

- Candidates
 - Web Service (SOAP + XML)
 - REST
 - JSON
 - YAML
 - Google protocol buffers
 - HTTP-based custom protocol
Summary

- Management of overlay traffic is necessary
 - Large amount of traffic
 - High costs for ISPs

- SmoothIT Information Service
 - Deployed in the network of ISPs
 - Provide information to overlay applications
 - Optimize traffic and achieve win-win situation
Thank you for your attention!

Thanks to SmoothIT’s project partners:

UZH, DOCOMO, TUD, AUEB, PrimeTel, AGH, ICOM, UniWue, TID